Development of Biocatalyst Systems for Renewable Biofuel Production

Enzyme?

- Proteins that catalyze the chemical reactions

- Enzymes will not be consumed by the reactions

Advanced Cellulosic Biofuels

High enzyme costs to covert cellulose to sugars (Saccharification) have historically been one of the biggest challenges to a commercially viable cellulosic biofuel process.

Birmanyy Crop

Plant Cell's

diant-fibri

Sugar,

Plant Cells

Enzymes Needed for Biofuel Production?

- Low cost
- Stable
- thermal stable, long half-life, resistant to high/low pH , resistant to phenolic compounds
- Effective
- reduce enzyme loading and cost

Enzymes of Interest

1. Cellulase-catalyzed hydrolysis of beta-1,4-D-glycosidic linkages in cellulose (cellulose simple sugars)

2. Lipase-catalyzed synthesis of fatty acid methyl esters (fat -> biodiesel)

Delivery Platforms

1.Spores

2.Carbon

3. Nano-materials (e.g., carbon, nano gold)

Development of Biocatalyst Express Enzymes on Surface of Spores by Gene Fusion

Exosporium basal layer

Spore co

Cortex

Expressing Fluorescent Proteins on Surface of Spores by Gene Fusion

Bacillus thuringiensis Spore-based Display System

Enhanced stability from 3 weeks to > 7 years Cheap to produce Can be recovered and reused

Prototype (dead spores + catalytic enzymes on the surface)

Express Lipase on the Surface of the Biocatalysts for Biodiesel Production

Endocellulase, Exocellulase and β-glucosidae Are the Key Enzymes Required to Covert The Cellulose to Glucose

Spore Expressed Endonuclease

Approach 2 Continuous-Flow Bioreactor System

(carbon fibers, polypropylene, polystyrene, nylon, glass fiber, carbon nanotubes, magnetic particles)

1st Generation

2nd Generation

15th Generation

3D rendering of platform model

Continuous-Flow Bioreactor System

Immobilize the Enzymes on Magnetic Particles

Immediate Application In Bioenergy and Bio-based Refinery

- 1. Advanced Cellulosic Biofuels
- 2. Biodiesel Production
- 3. Bio-based Product Processing