Valorizing Carbon Dioxide into Commodity Chemicals (& Energy Carriers) using Catalysis

Wesley Bernskoetter

Department of Chemistry

Mizzou CEI: Oct 3, 2024

What are Catalysts?

igh fid h w ...

From web image search

From AI (Imagen 2)

What are Catalysts?

An alternate analogy

Catalysts are molecular machines...

...they assemble feedstock parts

After constructing product, they start the same process again

Motivations and Inspirations

CO₂-A Renewable C₁ Feedstock

- Highly abundant (10¹⁴ tons in atmosphere and oceans)
- Cheap availability
- Essentially non-toxic (compared to Cl₂C=O & CO)
- It sticks to metals (the active part of most catalysts) reasonably well

Motivations and Inspirations

CO₂-A Renewable C₁ Feedstock

- Highly abundant (10¹⁴ tons in atmosphere and oceans)
- Cheap availability
- Essentially non-toxic (compared to Cl₂C=O & CO)
- It sticks to metals (the active part of most catalysts) reasonably well

Motivations and Inspirations

CO₂-A Renewable C₁ Feedstock

- Highly abundant (10¹⁴ tons in atmosphere and oceans)
- Cheap availability
- Essentially non-toxic (compared to Cl₂C=O & CO)
- It sticks to metals (the active part of most catalysts) reasonably well

Commodity Chemicals

chemicals we use to make other stuff Molecular Energy Sources chemicals we use as fuels or to store fuels

Current & Recent CO₂ Catalysis Projects and \$

Sustainable Polymer Building Blocks

Current & Recent CO₂ Catalysis Projects and \$

Reversible CO₂ Hydrogenation

For Chemicals & Energy

If At First You Fail...

Chem. Sci. 2015, 6, 4291.

ACS Catal. 2015, 5, 2404.

...Add Lewis Acid

Formic acid dehydrogenation

2° PNP Fe(II) w/o LA: 200 TON 2° PNP Fe(II) w/ LA: ~1 x 10⁶ TON

J. Am. Chem. Soc. **2014**, 136, 10234. CO₂ hydrogenation to formate

2° PNP Fe(II) w/o LA: 900 TON 3° PNP Fe(II) w/o LA: 1100 TON **3° PNP Fe(II) w/ LA: 46,000TON**

Chem. Sci. **2015**, 6, 4291.

Methanol dehydrogenation

2° PNP Fe(II) w/o LA: 350 TON 2° PNP Fe(II) w/ LA: 51,000 TON

ACS Catal. 2015, 5, 2404.

Lewis Acid Influence Is Widespread

So What is the Lewis Acid Doing?

Formic acid dehydrogenation

2° PNP Fe(II) w/o LA: 200 TON 2° PNP Fe(II) w/ LA: ~1 x 10⁶ TON

J. Am. Chem. Soc. **2014**, 136, 10234. CO₂ hydrogenation to formate

xs base

2° PNP Fe(II) w/o LA: 900 TON 3° PNP Fe(II) w/o LA: 1100 TON **3° PNP Fe(II) w/ LA: 46,000TON**

Chem. Sci. **2015**, 6, 4291.

Methanol dehydrogenation

2° PNP Fe(II) w/o LA: 350 TON 2° PNP Fe(II) w/ LA: 51,000 TON

ACS Catal. 2015, 5, 2404.

Mechanisms of Hydrogenation Catalysis

143, 10631.