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I n t r o d u c t i o n

Nuclear Power Plant Operation

Reactor 
Core
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I n t r o d u c t i o n

Reactor Core Fuel Assembly

Reactor Core Normal Operation

Nuclear Fuel 
Assembly Layout

Single Fuel 
AssemblySingle Rod/Pin with Fuel Pellets

Prevent Boiling Crisis and/or Critical Heat Flux (CHF) is 
the KEY!
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• 7×7 rod bundle
• 45 heated rods
• 4 support rods

Typical geometry 
of PWR fuel rods

( 56 TC’s)

M o d e l  V a l i d a t i o n

Original CHF Model Predictions

• 23 DP cells
• 13 steam probe
• 7 Spacer grids
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Working fluid: 

Water or Steam

• 7×7 rod bundle
• 45 heated rods
• 4 support rods

Typical geometry 
of PWR fuel rods

( 56 TC’s)

• System operating pressure: up to 413.7 kPa (60 Psia)
• Inlet water velocity: -0.2 to 0.2 m/sec (-8 to 8 in/sec)
• Peak power: up to 1.97 kW/m (0.6 kW/ft)
• Peak cladding temperature: up to 1144.3 K (1600 oF)
• Inlet subcooling:  up to 83 K (150 oF)

B e n c h m a r k  E x p e r i m e n t s

NRC/PSU Rod Bundle Heat Transfer (RBHT) Test Facility

• 23 DP cells
• 13 steam probe
• 7 Spacer grids
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M a c h i n e  L e a r n i n g  M o d e l  D e v e l o p m e n t  

Physics Informed ML Structures

Neuron Network Random Forest

ML input space, x, 
• Pressure
• Inlet mass flow rate
• Rod temperature
• Fluid density 
• Viscosity 
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Exp # 
Inlet Velocity 

m/s (in/s) 
Pressure 

kPa (psia) 
Initial PCT 

K (oF) 
Subcooling 

K (oF) 
Peak Power 

kW/m (kW/ft) 
7063 0.0254 (1) 

275.8 (40) 

1033 (1400) 

10 (18) 1.31 (0.4) 
7090 0.0254 (1) 10 (18) 1.31 (0.4) 
7095 0.0254 (1) 80 (150) 1.31 (0.4) 
7112 0.0254 (1) 50 (90) 0.97 (0.3) 
7151 0.0191 (0.75) 53 (96) 1.31 (0.4) 
7157 0.0254 (1) 11 (20) 1.31 (0.4) 
7166 0.0254 (1) 80 (150) 1.31 (0.4) 
7168 0.0254 (1) 51 (91) 0.97 (0.3) 
7174 0.0191 (0.75) 53 (96) 1.31 (0.4) 
8009 0.0254 (1) 22.2 (40) 1.31 (0.4) 
8011 0.0254 (1) 53.3 (96) 1.31 (0.4) 
8018 0.0254 (1) 53.3 (96) 1.31 (0.4) 
8021 0.0254 (1) 137.9 (20) 22.2 (40) 1.31 (0.4) 
8023 0.0254 (1) 413.7 (60) 22.2 (40) 1.31 (0.4) 
8040 0.058 (2) 275.8 (40) 53.3 (96) 1.31 (0.4) 
8041 0.0254 (1) 206.8 (30) 22.2 (40) 1.31 (0.4) 

Total 10,047 data points 

Training

Predicting 

• 80% training and 20% validation 
• Optimal ML architectures obtained 

through a comprehensive grid 
search study 

• Early stop to prevent over training 
• 10-fold cross-validation to address 

model over-fitting

160 estimators with max 
depth of 35 and max 
feature of 0.6

ANN architecture: 
32/64/32/1 with 
“ADAM” optimizer, 
epoch of 90, and batch 
size of 350. 

Standalone I&M Model and 

pool entrainment model 
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• 7×7 rod bundle
• 45 heated rods
• 4 support rods

Typical geometry 
of PWR fuel rods

( 56 TC’s)

M o d e l  V a l i d a t i o n

ML CHF Model Predictions – Preliminary

• 23 DP cells
• 13 steam probe
• 7 Spacer grids
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Advanced Instrumentation - II

Fluid 

Visualization

Rod Rod

Flow Channel

Droplet Size Distribution
Analysis interval: 20 sec

Droplet Velocity Distribution

B e n c h m a r k  E x p e r i m e n t s

Laser Imaging System
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M o d e l  V a l i d a t i o n

ML CHF Model Predictions – Preliminary

Flow and Heat Transfer Loop

Macro-Scale Stereo-PIV

Micro-Scale Stereo-PIV

Velocity Profile in Microchannel

Micro Cooling Systems
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M a c h i n e  L e a r n i n g  M o d e l  D e v e l o p m e n t  

Computer Vision Aided Image Processing Techniques

Fully Convolutional Neural Network (FCN) - 

Convolutional Block Attention Module (CBAM)

• Downsampling block consists of a convolution layer (Cov2D), 
batch normalization (BN), activation function, and max 
pooling layer 

• Upsampling block restores the feature domain through 
deconvolution layers (DeCov2D) 

Vision Transformer (ViT) based Model

• Encoder: linear tokenization block combined with both the 
position and known boundary conditions Transformer 
blocks with a multi-head self-attention (MHA) followed by a 
feed-forward neural network also with residual 
connections. 

• Decoder: identical number of upsampling blocks 
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